

Kincraig Primary school

Maths and Written Calculation Policy Updated: March ²4

Introduction

In accordance with our school aims we aim to provide a variety of experiences which will encourage the children to reach their full mathematical potential by developing a positive and confident attitude towards mathematics.

The teaching of mathematics at Kincraig Primary School adheres to the National Curriculum mathematics programmes of study 2014 and follows the 'White Rose' mastery scheme of work. The document below outlines how mathematics is taught in Kincraig.

Key principles of our Mastery Curriculum

A belief that all pupils can gain a deep and conceptual understanding of maths through secure learning at each stage.

Curriculum

A Mastery curriculum at a greater depth - key concepts and misconceptions are identified so pupils can solve problems synoptically - making connections and transferring knowledge.

Assessment

Continuous assessment systematically identifies what pupils don't know and should; remedial action is swiftly taken.

Pupils

- Pupils are highly numerate and fluent in number work
- Pupils are confident in their ability to be successful in maths; they have a self-concept of themselves as mathematicians
- Pupils appreciate that effort matters when used to practice intelligently
- Pupils are secure in their knowledge of the How, What and Why

Teachers

- Teachers employ skilful questioning to gain depth in learning
- Teachers sequence knowledge in planning and teaching for learning progression
- Teachers ensure pupils think mathematically and systematically to develop pupils' procedural and metacognitive knowledge
- Teachers have an infectious and visible passion for maths

Provision

Pupils are provided with a variety of opportunities to develop and extend their Mathematical skills, including:

- Group work
- Paired work
- Whole class teaching
- Individual work

Pupils engage in:

- the development of mental strategies
- written methods
- practical work
- investigational work
- problem solving
- mathematical discussion
- consolidation of basic skills and number facts
- maths games

We recognise the importance of establishing a secure foundation in mental calculation and recall of number facts before standard written methods are introduced. We use accurate mathematical vocabulary in our teaching and children are expected to use it in their verbal and written explanations.

Mathematics contributes to many subjects and it is important the children are given opportunities to apply and use Mathematics in real contexts. It is important that time is found in other subjects for pupils to develop their Numeracy Skills, e.g. there should be regular, carefully planned opportunities for measuring in science and technology, for the consideration of properties of shape and geometric patterns in technology and art, and for the collection and presentation of data in history and geography.

We endeavour at all times to set work that is challenging, motivating and encourages the pupils to think about how they learn and to talk about what they have been learning. Additional enrichment opportunities are provided for pupils to further develop mathematical thinking e.g. through cooking, music, and maths investigations and games.

Calculation Introduction

The following calculation policy follows the White Rose Scheme of Work that we have adopted in school. The calculation policy focuses on the links between, and also the progression through, Concrete, Pictorial and Abstract stages. Pupils need to be taught to decide what approach they will take to a calculation, to ensure that they select the most appropriate method for the numbers involved: Can I do it in my head using a mental strategy? Could I use some jottings to help me? Should I use a written method to work it out?

Concrete, visual and abstract (CPA Model)

Children's conceptual understanding and fluency is strengthened if they experience concrete, visual and abstract representations of a concept during a topic or lesson. Moving between the concrete and the abstract helps children to connect abstract symbols with familiar contexts, thus providing the opportunity to make sense of, and develop fluency in the use of, abstract symbols.

AIMS

- To ensure consistency and progression in our approach to calculation
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations
- To ensure that children can use these methods accurately with confidence and understanding

HOW

- Use the calculation policy as the basis of your planning but ensure you use previous or following years' guidance to allow for personalised learning
- Always use Assessment for Learning to identify suitable next steps in calculation for groups of children
- If, at any time, children are making significant errors, return to the previous stage in calculation
- Always use suitable resources, models and images to support children's understanding of calculation and place value, as appropriate
- Encourage children to make sensible choices about the methods they use when solving problems

EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Combining two parts to make a whole:part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using tenframe.	Adding three single digits. Use of base 10 to combine two numbers.	Column methodregrouping. Using place value counters (up to 3 digits).	Column methodregrouping. (up to 4digits)	Column methodregrouping. Use of place value counters for adding decimals.	Column methodregrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Findthedifference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4digits)	Column method with regrouping. Abstractforwhole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays $2 d \times 1 d$ using base 10	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Sharing objects into groups Division as grouping e.g. Ihave 12 sweets and put them in groups of 3 , how many groups? Use cubes and draw round 3 cubes ata time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2ddivided by 1 d using base 10 or place value counters	Division with a remainder Shortdivision (upto 3 digits by 1 digitconcrete and pictorial)	Short division (upto4digitsbya 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits bya 2 digit number) Children should exchange into the tenths and hundredths column too

EYFS

Key Representations

EYFS - Stages in Addition

Children will engage in a wide variety of songs and rhymes, games and activities. They will begin to relate addition to combining two groups of objects, first by counting all and then by counting on from the largest number.

They will find one more than a given number.
In practical activities and through discussion they will begin to use the vocabulary involved in addition.

'You have five apples and I have three apples. How many apples altogether?'

Counting on method

To support children in moving from a counting all strategy to one involving counting on, children should still have two groups of objects but one should be covered so that it cannot be counted. For example, when calculating $4+2$, count out the two groups of counters as before.
then cover up the larger group with a cloth.

For most children, it is beneficial to place the digit card on top of the cloth to remind the children of the number of counters underneath. They can then start their count at 4 , and touch count 5 and 6 in the same way as before, rather than having to count all of the counters separately as before.
Those who are ready may record their own calculations.

EYFS - Subtraction

Children will engage in a variety of counting songs and rhymes and practical activities.

In practical activities and through discussion they will begin to use the vocabulary associated with subtraction.
They will find one less than a given number.
They will begin to relate subtraction to 'taking away' using objects to count 'how many are left' after some have been taken away.

$$
6-2=4
$$

'Take two apples away. How many are left?'
Children will begin to count back from a given number.

EYFS - Multiplication

Children will engage in a wide variety of songs and rhymes, games and activities.
In practical activities and through discussion they will begin to solve problems involving doubling.

'Three apples for you and three apples for me. How many apples altogether?'

EYFS - Division

Children will engage in a wide variety of songs and rhymes, games and activities.
In practical activities and through discussion they will begin to solve problems involving halving and sharing.

Share the apples between two people.
'Half of the apples for you and half of the apples for me.'

Objective\&Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numberstogetheras agroupor in a bar.	Use picturesto add two numbers together \square as agroup orin a bar.	$4+3=7$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regroupingtomake 10. This is an essential skill for column addition later.		Use pictures or a number line. Regroup or partitionthesmallernumberusingthepart part whole model to make 10. $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use numberbonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Objective \& Strategy	Concrete	Pictorial	Abstract									
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$									
Use known number facts Part part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20 \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$									
Using known facts		$\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square+\text { 昭 } & =\text { 昭 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$									
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$									

Objective \& Strategy	Concrete	Pictorial	Abstract	
Add a two digit number and ones	$17+5=22$ Usetenframeto make 'magicten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $$	
Adda2digitnumber andtens	Explore that the ones digitdoes not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$	
Add two 2-digit numbers	Hin $\|I\| \mid$ Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+4 又 \\ 20+5 \quad+40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$	
Add three 1-digit numbers	Combinetomake10firstifpossible, or bridge 10 then add third digit	 Regroup and draw representation.	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.	

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Usephysical objects, counters, cubes etc to showhowobjects canbetakenaway.	$15-3=$ \square Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	Move objects away from the group, counting backwards.	Count back in ones using a number line.	Put 13inyourhead, countback 4. Whatnumber are you at?
Find the Difference	Compare objects and amounts Lay objects to represent bar model.	Countonusing a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister.?

Objective \& Strategy	Concrete	Pictorial	Abstract	
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Linktoaddition.Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Usepictorial representationsto showthepart.	Move to using numbers within the part whole model.	
Make 10	Make 14 on the ten frame. Take 4 away to maketen, thentakeonemore awayso that you have taken 5 .	Jump back 3 first, then another 4 . Use ten as the stoppingpoint.	$16-8$ How many do we take off first to get to 10? How many left to take off?	
Bar model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$	

Objective \& Strategy	Concrete	Pictorial	Abstract	
Subtracting tens and ones Year4subtractwith up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} 2^{6} 8^{\prime} 54 \\ -1562 \\ \hline 1192 \end{array}$ Use the phrase 'take and make' for exchange	
Year 5- Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} { }^{2} Z^{10} x^{10} 0^{1} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for placeholders.	
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{r} x^{14} 809,699 \\ -89,949 \\ \hline 60,750 \\ \hline \times 1815 \cdot 3 \mathrm{k}^{9} 119 \mathrm{~kg} \\ -36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$	

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstratedoubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, childrenmayuse theirfingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Objective \& Strategy	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problernere are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid outin arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show understanding	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

 Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters andcubes and Numicon. Pupils should understand that an array can representdifferentequations andthat, as multiplicationiscommutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. 0000 0000 0000	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinfores reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the Inverse This shouldbe taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Objective \& Strategy	Concrete	Pictorial			Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding.			$12 \div 3=4$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number Think of the b ber of groups how many w	ouping e. Spitittit ding by and in each g	o the numwork out up.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	Howmanygroups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3=5 \quad 5 \times 3=15$ $15 \div 5=3 \quad 3 \times 5=15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eightlinking number sentences. $7 \times 4=28$ $4 \times 7=28$ $28 \div 7=4$ $28 \div 4=7$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$

Objective \& Strategy	Concrete	Pictorial	Abstract
Division with remainders.	$14 \div 3=$ Divide objects between groups and see how much is left over Example without $40 \div 5$ Ask "How many Example with ret $38 \div 6$	Jumpforwardinequaljumpsonanumberline then see how many more you need to jump to find a remainder. Draw dots and groupthemto divide an amount and clearly show a remainder. Use bar models to show division with remainders. remainder: 5s in 40?" nainder: s, when it becomes inefficient to count in single mu rded using known facts.	Complete written divisions and show the remainder using r. es remainder of 2 tiples, bigger

Long Division

Step 1-a remainder in the ones

$$
\begin{gathered}
h t o \\
041 R 1 \\
\hline 165
\end{gathered}
$$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th $\mathrm{h} t \mathrm{o}$
$8 \longdiv { 0 4 0 0 R 7 }$
8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Long Division

Step 1 continued...

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

$$
\begin{array}{r}
\text { th } \mathrm{ht} \text { to } \\
0402 \\
\hline \begin{array}{r}
1609 \\
\frac{-8}{1}
\end{array}
\end{array}
$$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

Long Division

Step 2—a remainder in the tens

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t 0 \\ 2 \longdiv { 2 8 } \end{array}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens -- but there is a remainder!	$\begin{gathered} t 0 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ =-\frac{4}{18} \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} t \circ \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Long Division

Step 2—a remainder in any of the place values

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} h t \circ \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h t \circ \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} \quad \mathrm{hto} \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$ Divide 2 into 7 . Place 3 into the quotient.	$\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{aligned} & h t \circ \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{0} 7 \\ & -\quad 6 \\ & \hline 18 \end{aligned}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h t o \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ \hline 07 \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{aligned} & h t o \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{07} \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h t \circ \\ & 2 \longdiv { 1 3 9 } \\ & \hline \frac{-2}{278} \\ & -\quad 6 \\ & -18 \\ & -18 \\ & \hline 0 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

Policy last update March'24

The Mathematics Policy at Kincraig Primary School will be reviewed and modified on a regular basis at least every two years. It is possible to add amendments to this document prior to a review and these will be incorporated into the next issue. To add comments please complete the information on this sheet adding the date and signing where indicated.

Name of person(s) responsible for this policy -Ryan Gumley/Joe Wyres
Policy Adopted by the Governing Body -

Signed
Date \qquad

Date	Proposed Amendment	Signed

